Table of Contents
18CIV14 : ELEMENTS OF CIVIL ENGINEERING AND MECHANICS 2
A. COURSE INFORMATION 2

1. Course Overview 2
2. Course Content 2
3. Course Material 3
4. Course Prerequisites 3
B. OBE PARAMETERS 3
5. Course Outcomes 3
6. Course Applications 4
7. Articulation Matrix 4
8. Mapping Justification 5
9. Curricular Gap and Content. 5
10. Content Beyond Syllabus 5
C. COURSE ASSESSMENT
11. Course Coverage 6
12. Continuous Internal Assessment (CIA) 6
D1. TEACHING PLAN - 1 6
Module - 1 6
Module - 2 8
E1. CIA EXAM - 1 8
a. Model Question Paper - 1 8
b. Assignment -1 9
D2. TEACHING PLAN - 2 10
Module - 3 10
Module-4 11
E2. CIA EXAM - 2 12
a. Model Question Paper - 2 12
b. Assignment - 2 13
D3. TEACHING PLAN - 3 14
Module - 5 14
E3. CIA EXAM - 3 15
a. Model Question Paper - 3 15
b. Assignment - 3 15
F. EXAM PREPARATION 17
13. University Model Question Paper 17
14. SEE Important Questions 18
Note : Remove "Table of Content" before including in CP Book
Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

18CIV14 : ELEMENTS OF CIVIL ENGINEERING AND MECHANICS

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	CIVIL
Year / Semester:	$2018 / 1$ st	Academic Year:	$2018-19$
Course Title:	Elements of civil engineering and mechanics	Course Code:	18 CIV14
Credit / L-T-P:	03	SEE Duration:	180 Minutes
Total Contact Hours:	40	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	$1 /$ Module
Course Plan Author:		Sign	Dt:
Checked By:		Sign	Dt:

2. Course Content

Mod ule	Module Content	Teaching Hours	Module Concepts	Blooms
1	Introduction to Civil Engineering Scope of different fields of Civil Engineering - Surveying, Building Materials, Construction Technology, Geotechnical Engineering, Structural Engineering, Hydraulics, WaterResources and Irrigation Engineering, Transportation Engineering, Environmental Engineering.11nfrastructure: Types of infrastructure, Role of Civil Engineer in thelnfrastructural Development, Effect of the infrastructural facilities onsocio-economic development of a country. Introduction to Engineering Mechanics: Basic idealizations Particle, Continuum and Rigid body; Newton's lawsBForce and its characteristics, types of forces-Gravity, Lateral and its distribution on surfaces, Classification of force systems, Principle of physical independence, superposition, transmissibility of forces, , Introduction to SI units.Couple, Moment of a couple, Characteristics of couple, Moment of a force, Equivalent force - Couple system; Numerical problems on moment of forces and couples, on equivalent force - couple system.	8	Scope of civil engineering, Resolution of Forces	L3
2	Concepts: Resultants and Equilibrium Composition of forces Definition of Resultant; Composition of coplanar -concurrent force system, Parallelogram Law of forces, Principle of resolved parts; Numerical problems on composition of coplanar concurrent force systems. Equilibrium of forces - Definition of Equilibrant; Conditions of static equilibrium for different force systems, Lami's theorem; Numerical problems on equilibrium of coplanar - concurrent and non-concurrent force systems.Application- Static Friction in rigid bodies in contact Types of friction, Laws of static friction, Limiting friction, Angle of friction, angle of repose; Impending motion on horizontal and inclined planes;Numerical Problems on single and two blocks on inclined planes	8	Resultant of Concurrent forces, Friction and Equilibrium	L3
3	Support Reaction in beams Types of Loads and Supports, statically determinate beams, Numerical problems onsupport reactions for statically determinate beams with Point load (Normal and inclined) and uniformly distributed and uniformly varying loads and Moments. Types of trusses, analysis of statically determinate trusses using method of joints and method of section	8	Resolving of Support Reaction, Analysis of trusses	L3
4	Introduction to the concept, centroid of line and area, centroid of basic geometrical figures, computing centroid for- T, L, I, Z and full/quadrant circular sections and their built up sections. Numerical problems	8	Location of Centroid, Determination of Moment of	L3

	Introduction to the concept, Radius of gyration, Parallel axis theorem, Perpendicular axis theorem, Moment of Inertia of basic planar figures, computing moment of Inertia for - T, L, I, Z and full/quadrant circular sections and their built up sections. Numerical problems		Inertia	
5	Concepts and Applications Definitions - Displacement Average velocity - Instantaneous velocity - Speed Acceleration - Average acceleration - Variable acceleration Acceleration due to gravity - Newton's Laws of Motion. D' Alembert's principle and its application in plane motion and connected bodies including pulleys	8	Kinematics, kinetics	L3

3. Course Material

Mod ule	Details	Available
1	Text books	
	Elements of civil engineering and mechanics by M.N.Shesha Prakash and Ganesh, 3rd Revised edition	In Lib
	Elements of civil engineering and mechanics by S,S, Bhavikatti, New Age Internqtional Publisher,New Delhi,4th edition	In dept
2	Reference books	In Lib
	Elements of civil engineering and mechanics by B.K.Kholapuri and Ganesh, 3 Revised edition	
3	Others (Web, Video, Simulation, Notes etc.)	Not Available

4. Course Prerequisites

SNo	Course Code	Course Name	Module / Topic / Description	Sem	Remarks	Blooms Level
1	18 CIV14	Elements of civil1.Knowledge of Mathematics engineering and2.Knowledge of Physics mechanics	1		L3	

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B. 5 .

B. OBE PARAMETERS

1. Course Outcomes

\#	COs	Teach. Hours	Concept	Instr Method	Assessmen t Method	Blooms' Level
CO1	Students should be able to describe the scope of various fields of civil engineering	2	Scope of civil engineering	BB,ppt	C.I.E,Unit test,Assign ment	Understand
CO 2	Students should be able to illustrate forces on couple system and moment of forces	6	Resolution of Forces	BB	C.I.E,Unit test,Assign ment	L3 Apply
CO 3	Students should be able to Calculate the resultant of force system subjected to various load	4	Resultant of Concurrent forces	BB,Tutori al	C.I.E,Unit test,Assign ment	L3 Apply
CO 4	Students should be able to Apply laws	3	Friction and	BB	C.I.E,Unit	L3

BS

	of friction and types of friction		Equilibrium		test,Assign ment	Apply
CO 5	Students should be able to compute the reactive force that develop as result of external load	3	Resolving of Support Reaction	BB,Tutori al	C.I.E.Unit test,Assign ment	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
CO6	Students should be able to calculate the trusses by method of joints and section	5	Analysis of trusses	BB	$\begin{gathered} \text { C.I.E,Unit } \\ \text { test,Assign } \\ \text { ment } \end{gathered}$	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
$\mathrm{CO7}$	Students should be able to determine centroid of built up section	4	Location of Centroid	BB,Tutori al	C.I.E,Unit test,Assign ment	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
CO8	Students should be able to calculate M.I of full/quadrant circular section	4	Determinati on of Moment of Inertia	BB,Tutori al	C.I.E,Unit test,Assign ment	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
CO9	Students should be able to illustrate relationship between motion of bodies	6	kinematics	BB	C.I.E,Unit test,Assign ment	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
CO10	Students should be able to describe relationship between plane motion and connected bodies	2	kinetics	BB	C.I.E,Unit test,Assign ment	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
-	Total	50	-	-	-	-

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	CO	Level
1	Basic fields of civil engineering	CO 1	L 2
2	Resolve the forces acting on body	CO 2	L 3
3	Concurrent forces	CO 3	L 3
4	Equilibrium and friction	CO 4	L 3
5	Support reaction	CO 5	L 3
6	Analyzing the forces acting on trusses	CO 6	L 3
7	Calculating the area and center of gravity of geometric figures	CO	L 3
8	computing the radius of gyration of geometric figures	CO	L 3
9	Kinematics	CO 9	L 3
10	Kinetics	CO 10	L 3

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO - PO MAPPING)

-	Course Outcomes	Program Outcomes												
\#	cos					PO5	$\begin{gathered} \mathrm{PO} \\ 6 \end{gathered}$	PO7	$\begin{gathered} \mathrm{PO} \\ 8 \end{gathered}$	PO9	$\left\lvert\, \begin{gathered} \mathrm{PO} 1 \\ 0 \end{gathered}\right.$	$\begin{gathered} \mathrm{PO} 1 \\ 1 \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{PO}_{1} \\ 2 \end{array}$	Level
CO1	Students should be able to describe the scope of various fields of civil engineering	1	-	-	-	-	-	-	-	-	-	-	-	L2
CO 2	Students should be able to illustrate forces on couple system and moment of forces	2	-	-	-	-	-	-	-	-	-	-	-	L3
CO 3	Students should be able to Calculate the resultant of force system subjected to various load	2	-	-	-	-	-	-	-	-	-	-	-	L3
CO 4	Students should be able to Apply laws of friction and types of friction	2	-	-	-	-	-	-	-	-	-	-	-	L3
CO 5	Students should be able to	2	-	-	-	-	-	-	-	-	-	-	-	L3

compute the reactive force that develop as result of external load

CO6	Students should be able to calculate the trusses by method of joints and section	2	-	-	-	-	-	-	-	-	-	-	-	L3
CO 7	Students should be able to determine centroid of built up section	2	-	-	-	-	-	-	-	-	-	-	-	L3
CO8	Students should be able to calculate M.I of full/quadrant circular section	2	-	-	-	-	-	-	-	-	-	-	-	L3
COg	Students should be able to illustrate relationship between motion of bodies	2	-	-	-	-	-	-	-	-	-	-	-	L3
CO10	Students should be able to describe relationship between plane motion and connected bodies	2	-	-	-	-	-	-	-	-	-	-	-	L3

Note: Mention the mapping strength as 1, 2, or 3

4. Mapping Justification

Mapping		Justification	Mapping
CO	PO	-	-
CO1	PO1	Know basics of Civil Engineering, its scope of study	L1
CO 2	PO1	Understand the fundamental principles of Mechanics	L3
CO 3	PO1	Apply mechanics concepts for computing the resultant of Coplanar Force systems.	L3
CO4	PO1	Formulate and apply the conditions of static equilibrium to problems involving Coplanar Force systems	L3
CO 5	PO1	Apply the concept and theory of Dry friction to simple problems involving static friction.	L3
CO6	PO1	Apply the concept and theory of reaction to simple problems of trusses	L3
CO7	PO1	Locate the centroidal distances of composite laminas	L3
CO8	PO1	Compute the moment of Inertia of different laminas	L3
COg	PO1	Understand the basics of kinematics	L3
CO10	PO1	Express the relationship between motion of bodies	L3

Note: Write justification for each CO-PO mapping.
5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A. 4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping

BS
Copyright ©2017. CAAS. All rights reserved.

1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

Note: Anything not covered above is included here.
C. COURSE ASSESSMENT

1. Course Coverage

Mod	Title	Teaching	No. of question in Exam						CO	Levels
ule \#		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra Asg	SEE		
1	Introduction to Civil Engineering \&Engineering Mechanics	08	2	-	-	1	1	2	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2 \\ & \hline \end{aligned}$	L3
2	Analysis of Concurrent Force Systems	08	2	-	-	1	1	2	$\begin{aligned} & \mathrm{CO}_{3} \\ & \mathrm{CO}_{4} \end{aligned}$	L3
3	Analysis of Non-Concurrent Force Systems	08	-	2	-	1	1	2	$\begin{aligned} & \mathrm{CO} 5 \\ & \mathrm{CO} \end{aligned}$	L3
4	Centroids and Moments of Inertia of Engineering Sections:	08	-	2	-	1	1	2	$\begin{aligned} & \mathrm{CO} 7, \\ & \mathrm{Co8} \end{aligned}$	L3
5	Kinematics and Kinetics	08	-	-	4	1	1	2	$\begin{aligned} & \mathrm{COg} \\ & \mathrm{CO} 10 \end{aligned}$	L3
-	Total	40	4	4	4	5	5	10	-	-

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.
2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	CO	Levels
CIA Exam - 1	30	CO1, CO2, CO3, CO4	L2, L3, L3, L3
CIA Exam - 2	30	CO5, C06, CO7, C08	L3, L3, L3, L3
CIA Exam - 3	30	CO9, CO10	L3, L3
Assignment - 1	05	CO1, CO2, CO3, CO4	L2, L3, L3, L3
Assignment - 2	05	CO5, C06, CO7, CO8	L3, L3, L3, L3
Assignment-3	05	CO9, CO10	L3, L3
Seminar - 1	05	CO1, $\mathrm{CO} 2, \mathrm{CO} 3, \mathrm{CO} 4$	L2, L3, L3, L3
Seminar-2	05	CO5, CO6,CO7,CO8	L3, L3, L3, L3
Seminar-3	05	CO9, CO10	L3, L3
Other Activities - define Unit tests		CO1 to Cog	L2, L3,. ..
Final CIA Marks	40	-	-

Note : Blooms Level in last column shall match with A. 2 above.

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction to Civil Engineering \&Engineering Mechanics	Appr Time:	16 Hrs

a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	describe the scope of various fields of civil engineering	CO1	L2
2	illustrate forces on couple system and moment of forces	CO 2	L3
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Introduction to Civil Engineering Scope of different fields of Civil Engineering - Surveying, Building Materials, Construction Technology, Geotechnical Engineering, Structural Engineering, Hydraulics, WaterResources and Irrigation Engineering, Transportation Engineering, Environmental Engineering.	Co1	L2
2	Infrastructure: Types of infrastructure, Role of Civil Engineer in thelnfrastructural Development, Effect of the infrastructural facilities onsocio-economic development of a country.	C01	L2
3	Introduction to Engineering Mechanics: Basic idealizations - Particle, Continuum and Rigid body; Newton's lawsBForce and its characteristics, types of forces-Gravity, Lateral and its distribution on surfaces,	C01	L2
4	Classification of force systems, Principle of physical independence, superposition, transmissibility of forces, , Introduction to SI units	C01	L2
5	Couple, Moment of a couple, Characteristics of couple, Moment of a force, Equivalent force - Couple system	C01	L3
6	Numerical problems on moment of forces and couples, on equivalent force - couple system.	C01	L3
7	Numerical problems on moment of forces and couples, on equivalent force - couple system.	Co1	L3
8	Numerical problems on moment of forces and couples, on equivalent force - couple system.	C01	L3
C	Application Areas	CO	Level
1	Basic fields of civil engineering	CO 1	L3
2	Resolve the forces acting on body	CO 2	L4
d	Review Questions	-	-
1	Discuss briefly the role of Civil Engineers in the infrastructure development of a country	CO1	L1
2	Differentiate between flexible and rigid pavement	CO1	L3
3	Bring out briefly scope of following specialization of civil engineering i) Environmental Engineering ii) Geotechnical Engineering	CO 2	L2
4	Explain briefly the classification of roads.	CO 2	L4
5	Define force. Explain the classification of force system	CO 2	L2
6	Explain i)Principle of transmissibility of forces. ii)Principle of physical independence of forces	CO 2	L5
7	Define couple. Explain characteristics of couple	CO 2	L2
8	Bring out briefly scope of following specialization of civil engineering i) Structural Engineering i) Transportation Engineering	CO 2	L3
9	A force of 630N is acting on a block as shown in the fig-1. Find the i)Horizontal \& vertical components ii)Inclined to the plane and right angles to the plane	CO 2	L4
10	Replace 1000 N force at point A , which is acting at point B as shown in the fig-2. Also find the moment at A.	CO1	L1
11	A square A B C D as forces acting at along its sides as shown in the fig-3. Find the value of P \& Q, if the system reduces the couple. Also find the magnitude of the couple.	CO1	L4
e	Experiences	-	-
1		CO1	L2
2			
3			
4		CO_{3}	L3

Module - 2

Title:	Analysis of Concurrent Force Systems	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Calculate the resultant of force system subjected to various load	CO_{3}	L3
2	Apply laws of friction and types of friction	CO 4	L3
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
9	Resultants and Equilibrium Composition of forces - Definition of Resultant; Composition of coplanar -concurrent force system,	CO3	L3
10	Parallelogram Law of forces, Principle of resolved parts; Numerical problems on composition of coplanar concurrent force systems.	CO3	L3
11	Equilibrium of forces - Definition of Equilibrant; Conditions of static equilibrium for different force systems, Lami's theorem equilibrium for different force systems, Lami's theorem	CO3	L3
12	Numerical problems on equilibrium of coplanar - concurrent and nonconcurrent force systems	CO4	L3
13	Application- Static Friction in rigid bodies in contact Types of friction, Laws of static friction,	CO4	L3
14	Limiting friction, Angle of friction, angle of repose; Impending motion on horizontal and inclined planes	CO4	L3
15	Numerical Problems on single and two blocks on inclined planes	CO4	L3
16	Numerical Problems on single and two blocks on inclined planes	CO 4	L3
c	Application Areas	CO	Level
1	Concurrent forces	CO_{3}	L3
2	Equilibrium and friction	CO 4	L4
d	Review Questions	-	-
12	State and prove Parallelogram law of forces	CO_{3}	L3
13	Explain different types of friction	CO_{4}	L3
14	State and prove Lami'stheorem	CO_{3}	L3
15	Define i) Angle of friction ii) Angle of Repose	CO 4	L3
16	Define i) Equilibrant ii) Resultant force	CO4	L3
17	Define friction \& Explain laws of static friction	CO_{3}	L3
18	Explain with sketch Cone friction	CO_{3}	L3
19	Determine the reaction at contact points for spheres $\mathrm{A} \& \mathrm{~B}$ as shown in fig Q 2(a).It is given that $W A=1200 \mathrm{~N}, \mathrm{WB}=1500 \mathrm{~N}, d A=400 \mathrm{~mm}, d B=900 \mathrm{~mm}$	CO3	L3
e	Experiences	-	-
1		CO1	L2
2			
3			
4		CO_{3}	L3
5			

E1. CIA EXAM - 1
a. Model Question Paper - 1

Crs Code: $\operatorname{CS501PC}$	Sem:	1	Marks:	30	Time:
Course:				75 minutes	

-	-	Note: Answer any 2 questions, each carry equal marks.	Marks	CO	Level
1	a	Define couple. Explain characteristics of couple	5	CO1	L2
	b	Bring out briefly scope of following specialization of civil engineering i) Structural Engineering i) Transportation Engineering	5	CO1	L2
	c	A force of 630 N is acting on a block as shown in the fig-1. Find the i)Horizontal \& vertical components ii)Inclined to the plane and right angles to the plane	5	CO 2	L3
2	a	Define force. Explain the classification of force system	5	CO1	L3
	b	Explain i)Principle of transmissibility of forces. ii)Principle of physical independence of forces	5	CO1	L3
	c	Replace 1000 N force at point A , which is acting at point B as shown in the fig-2. Also find the moment at A	5	CO1	L3
3	a	State and prove Parallelogram law of forces	5	CO 2	L3
	b	Define i) Angle of friction ii) Angle of Repose	5	CO 2	L3
	C	A square A B C D as forces acting at along its sides as shown in the fig-3. Find the value of P \& Q, if the system reduces the couple. Also find the magnitude of the couple.	5	CO1	L3
4	a	Explain with sketch Cone friction	5	CO 2	L3
	b	State and prove Lami'stheorem	5	CO 2	L3
	C	Determine the reaction at contact points for spheres A \& B as shown in fig Q 2(a).It is given that $W A=1200 N, W B=1500 \mathrm{~N}, \mathrm{dA}=400 \mathrm{~mm}, \mathrm{~dB}=900 \mathrm{~mm}$	5	CO 2	L3

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Crs Code:	CS501PC Sem:	I	Marks:	$5 / 10$	Time:	$90-120$ minutes
Course:	Elements of civil engineering and mechanics					
Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.						

SNo	USN	Assignment Description	Marks	CO	Level
1		Discuss briefly the role of Civil Engineers in the infrastructure development of a country	5	CO1	L3
2		Differentiate between flexible and rigid pavement	5	CO1	L3
3		Bring out briefly scope of following specialization of civil engineering i) Environmental Engineering ii) Geotechnical Engineering		CO1	L3
4		Explain briefly the classification of roads.	5	CO 1	L3
5		Define force. Explain the classification of force system	5	CO 2	L3
6		Explain i)Principle of transmissibility of forces. ii)Principle of physical independence of forces	5	CO 2	L3
7		Define couple. Explain characteristics of couple		CO 2	L3
8		Bring out briefly scope of following specialization of civil engineering i) Structural Engineering i) Transportation Engineering	5	CO 2	L3
9		A force of 630 N is acting on a block as shown in the fig-1. Find the i)Horizontal \& vertical components ii)Inclined to the plane and right angles to the plane	5	CO 2	L3
10		Replace 1000 N force at point A, which is acting at point B as shown in the fig-2. Also find the moment at A.	5	CO 2	L3
11		A square A B C D as forces acting at along its sides as shown in the fig-3. Find the value of P \& Q, if the system reduces the couple. Also find the magnitude of the couple.		CO 2	L3
12		State and prove Parallelogram law of forces	5	CO 2	L3
13		Explain different types of friction	5	CO1	L3
14		State and prove Lami'stheorem	5	CO 1	L3
15		Define i) Angle of friction ii) Angle of Repose		CO 1	L3
16		Define i) Equilibrant ii) Resultant force	5	CO1	L3

17	Define friction \& Explain laws of static friction	5	CO1	L3
18	Explain with sketch Cone friction	5	CO1	L3
19	Determine the reaction at contact points for spheres A \& B as shown in fig Q 2(a).It is given that $W A=1200 \mathrm{~N}, \mathrm{WB}=1500 \mathrm{~N}, \mathrm{dA}$ $=400 \mathrm{~mm}, \mathrm{~dB}=900 \mathrm{~mm}$		CO1	L3
20	State and prove Parallelogram law of forces	5	CO 2	L3
21	Explain different types of friction	5	CO2	L3
22	State and prove Lami'stheorem	5	CO 2	L3
23	Define i) Angle of friction ii) Angle of Repose		CO 2	L3
24	Define i) Equilibrant ii) Resultant force	5	CO1	L3
25	Define friction \& Explain laws of static friction	5	CO1	L3
26	Explain with sketch Cone friction	5	CO1	L3
27	Determine the reaction at contact points for spheres A \& B as shown in fig Q 2(a).It is given that $W A=1200 \mathrm{~N}, \mathrm{WB}=1500 \mathrm{~N}, \mathrm{dA}$ $=400 \mathrm{~mm}, \mathrm{~dB}=900 \mathrm{~mm}$	5	CO1	L3
28	Discuss briefly the role of Civil Engineers in the infrastructure development of a country	5	CO1	L3
29	Differentiate between flexible and rigid pavement		CO1	L3
30	Bring out briefly scope of following specialization of civil engineering i) Environmental Engineering ii) Geotechnical Engineering	5	CO1	L3
31	Explain briefly the classification of roads.	5	CO 2	L3
32	Define force. Explain the classification of force system	5	CO 2	L3
33	Explain i)Principle of transmissibility of forces. ii)Principle of physical independence of forces		CO 2	L3
34	Define couple. Explain characteristics of couple	5	CO 2	L3
35	Bring out briefly scope of following specialization of civil engineering i) Structural Engineering i) Transportation Engineering	5	CO 2	L3
36	A force of 630N is acting on a block as shown in the fig-1. Find the i)Horizontal \& vertical components ii)Inclined to the plane and right angles to the plane	5	CO 2	L3
37	Replace 1000 N force at point A, which is acting at point B as shown in the fig-2. Also find the moment at A.	5	CO 2	L3
38	A square A B C D as forces acting at along its sides as shown in the fig-3. Find the value of P \& Q, if the system reduces the couple. Also find the magnitude of the couple.		CO 2	L3
39	State and prove Parallelogram law of forces	5	CO 2	L3
40	Explain different types of friction	5	CO 2	L3
41	State and prove Lami'stheorem	5	CO 2	L3
42	Define i) Angle of friction ii) Angle of Repose	5	CO 2	L3
43	Define i) Equilibrant ii) Resultant force	5	CO 2	L3
44	Define friction \& Explain laws of static friction	5	CO 2	L3
45	Explain with sketch Cone friction	5	CO 2	L3
46	Determine the reaction at contact points for spheres A \& B as shown in fig Q 2(a).It is given that $W A=1200 \mathrm{~N}, \mathrm{WB}=1500 \mathrm{~N}, \mathrm{dA}$ $=400 \mathrm{~mm}, \mathrm{~dB}=900 \mathrm{~mm}$	5	CO 2	L3
47	Bring out briefly scope of following specialization of civil engineering i) Structural Engineering i) Transportation Engineering	5	CO1	L3

D2. TEACHING PLAN - 2

Module - 3

Title:	Analysis of Non-Concurrent Force Systems	Appr Time:	16 Hrs
\mathbf{a}	Course Outcomes	-	Blooms

-	The student should be able to:	-	Level
1	compute the reactive force that develop as result of external load	CO_{5}	L3
2	calculate the trusses by method of joints and section	C06	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
17	Support Reaction in beams Types of Loads and Supports, statically determinate beams	CO 5	L3
18	Numerical problems on support reactions for statically determinate beams with Point load (Normal and inclined) and	CO 5	L3
19	Numerical problems on uniformly distributed and uniformly varying loads and Moments.	CO 5	L3
20	Numerical problems on uniformly distributed and uniformly varying loads and Moments.	CO 5	L3
21	Types of trusses,	CO6	L3
22	analysis of statically determinate trusses using method of joints and method of section	C06	L3
23	analysis of statically determinate trusses using method of joints and method of section	C06	L3
24	analysis of statically determinate trusses using method of joints and method of section	C06	L3
c	Application Areas	CO	Level
1	Support reaction	CO 5	L3
2	Analyzing the forces acting on trusses	CO6	L3
d	Review Questions	-	-
1	Explain different types of statically determinate beams	CO 5	L3
2	Explain different types of statically indeterminate beams	CO 5	L3
3	What is mean by support reaction	CO 5	L3
4	Explain different types of supports and loads in the analysis of beam	CO_{5}	L3
5	Determine the reaction at the supports for the system as shown in fig	CO 5	L3
6	Find the support reaction for beam loaded as shown in fig	CO 5	L3
7	Define trusses	CO6	L3
8	What are the assumption are made in analyzing the simple truss	C06	L3
9	Explain classification of trusses	CO6	L3
10	Differentiate between method of joint and method of section	CO6	L3
11	Analysis of statically determinate trusses using method of joints shown in fig	CO6	L3
e	Experiences	-	-
1			
2			
3			
4			
5			

Module - 4

Title:	Centroids and Moments of Inertia of Engineering Sections:	Appr Time:	16 Hrs
\mathbf{a}	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	determine centroid of built up section	CO 7	L 3
2	Calculate M.I of full/quadrant circular section		L 3
\mathbf{b}	Course Schedule	CO	Level
Class No Module Content Covered	Introduction to the concept, centroid of line and area, centroid of basic	CO 7	L 3
25			

	geometrical figures		
26	computing centroid for- T, L, I, Z and full/quadrant circular sections and their built up sections.	CO 7	L3
27	computing centroid for- T, L, I, Z and full/quadrant circular sections and their built up sections.	CO 7	L3
28	Numerical problems on centroid for- T, L, I, Z and full/quadrant circular sections and their built up sections.	CO 7	L3
29	ntroduction to the concept, Radius of gyration, Parallel axis theorem, Perpendicular axis theorem,	CO8	L3
30	Moment of Inertia of basic planar figures, computing moment of Inertia for - T, L, I, Z and full/quadrant circular sections and their built up sections	CO8	L3
31	Moment of Inertia of basic planar figures, computing moment of Inertia for - T, L, I, Z and full/quadrant circular sections and their built up sections	CO8	L3
32	Moment of Inertia of basic planar figures, computing moment of Inertia for - T, L, I, Z and full/quadrant circular sections and their built up sections	CO8	L3
c	Application Areas	CO	Level
1	Calculating the area and center of gravity of geometric figures	CO 7	L3
2	Computing the radius of gyration of geometric figures	CO8	L3
d	Review Questions	-	-
1	Define centroid	CO 7	L3
2	Determine the centroid of quarter circle	CO 7	L3
3	Determine the centroid of triangle by method of integration	CO 7	L3
4	Determine the centroid of lamina as shown in fig	CO7	L3
5	Determine the centroid of semi circle by method of integration	CO 7	L3
6	Define $2^{\text {nd }}$ moment of force	CO8	L3
7	What is mean by radius of gyration and explain	CO8	L3
8	State and prove parallel axis theorem	CO8	L3
9	State and prove perdendicular axis theorem	CO8	L3
10	Determine the MI of semi circle by method of integration	CO8	L3
11	Determine the MI of lamina as shown in fig	C08	L3
12	Determine the centroid of shaded part as shown in fig	CO 7	L3
e	Experiences	-	-
1		CO 7	L2
2			
3			
4		CO8	L3
5			

E2. CIA EXAM - 2
a. Model Question Paper - 2

b. Assignment - 2

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	CS501PC Sem:	I	Marks:	$5 / 10$	Time:	$90-120$ minutes	
Course:	Design and Analysis of Algorithms						

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1		Explain different types of statically determinate beams	5	CO8	L3
2		Explain different types of statically indeterminate beams	5	CO8	L3
3		What is mean by support reaction		C08	L3
4		Explain different types of supports and loads in the analysis of beam	5	CO8	L3
5		Determine the reaction at the supports for the system as shown in fig	5	CO8	L3
6		Find the support reaction for beam loaded as shown in fig	5	CO8	L3
7		Define trusses		CO8	L3
8		What are the assumption are made in analyzing the simple truss	5	COg	L3
9		Explain classification of trusses	5	COg	L3
10		Differentiate between method of joint and method of section	5	COg	L3
11		Analysis of statically determinate trusses using method of joints shown in fig		COg	L3
12		Define centroid	5	COg	L3
13		Determine the centroid of quarter circle	5	COg	L3
14		Determine the centroid of triangle by method of integration	5	COg	L3
15		Determine the centroid of lamina as shown in fig		COg	L3
16		Determine the centroid of semi circle by method of integration	5	COg	L3
17		Define $2^{\text {nd }}$ moment of force	5	CO8	L3
18		What is mean by radius of gyration and explain	5	CO8	L3
19		State and prove parallel axis theorem		CO8	L3
20		State and prove perdendicular axis theorem	5	CO8	L3
21		Determine the MI of semi circle by method of integration	5	CO8	L3
22		Determine the Ml of lamina as shown in fig	5	CO8	L3
23		Determine the centroid of shaded part as shown in fig	5	CO8	L3
24		Define centroid	5	CO8	L3
25		Determine the centroid of quarter circle		CO8	L3
26		Determine the centroid of triangle by method of integration	5	COg	L3
27		Determine the centroid of lamina as shown in fig	5	COg	L3
28		Determine the centroid of semi circle by method of integration	5	CO8	L3
29		Define $2^{\text {nd }}$ moment of force		CO8	L3
30		What is mean by radius of gyration and explain	5	CO8	L3
31		State and prove parallel axis theorem	5	CO8	L3
32		State and prove perdendicular axis theorem	5	CO8	L3
33		Determine the MI of semi circle by method of integration	5	CO8	L3
34		Determine the Ml of lamina as shown in fig		CO8	L3
35		Determine the centroid of shaded part as shown in fig	5	CO8	L3
36		Explain different types of supports and loads in the analysis of beam	5	C08	L3
37		Determine the reaction at the supports for the system as shown in fig	5	CO8	L3
38		Find the support reaction for beam loaded as shown in fig		COg	L3
39		Define trusses	5	COg	L3
40		What are the assumption are made in analyzing the simple truss	5	COg	L3
41		Explain classification of trusses	5	COg	L3
42		Differentiate between method of joint and method of section		COg	L3
43		Analysis of statically determinate trusses using method of joints shown in fig	5	CO9	L3
44		Explain different types of statically determinate beams	5	CO 9	L3

BS
Copyright ©2017. cAAS. All rights reserved.

45	Explain different types of statically indeterminate beams	5	CO9	L 3
46	What is mean by support reaction	5	CO9	L 3
47	Explain different types of supports and loads in the analysis of beam	5	CO9	L 3

D3. TEACHING PLAN - 3
Module - 5

Title:	Kinematics and Kinetics	Appr Time:	16 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	illustrate relationship between motion of bodies	COg	L3
2	describe relationship between plane motion and connected bodies	CO10	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
33	Concepts and Applications Definitions - Displacement - Average velocity	CO9	L3
34	Instantaneous velocity - Speed - Acceleration - Average acceleration	COg	L3
35	Variable acceleration - Acceleration due to gravity - Newton's Laws of Motion.	COg	L3
36	Variable acceleration - Acceleration due to gravity - Newton's Laws of Motion.	CO9	L3
37	D' Alembert's principle and its application in plane motion and connected bodies including pulleys	CO10	L3
38	application in plane motion and connected bodies including pulleys	CO10	L3
39	D' Alembert's principle and its application in plane motion and connected bodies including pulleys	CO10	L3
40	D' Alembert's principle and its application in plane motion and connected bodies including pulleys	CO10	L3
c	Application Areas	CO	Level
1	Kinematics	CO9	L3
2	Kinetics	CO10	L3
d	Review Questions	-	-
1	Define i) displacement ii) speed iii) uniform velocity iv) average velocity	CO10	L3
2	State and explain Newtons law of motion	CO10	L3
3	Derive relationship between linear acceleration and angular acceleration	COg	L3
4	Derive relationship between r.p.m and angular velocity	COg	L3
5	A wheel is rotating about a fixed axis at 20 r.p.m is uniformly accelerated for 70 sec , during which time it makes 50 revolution. Determine I) angular velocity at the end of this interval and ii) time required for the speed to reach 110 rpm	COg	L3
6	A burglar's car starts with an acceleratin of $2 \mathrm{~m} / \mathrm{sec} 2$. A police van came after 10 sec and continued to chase the burglar's car with an uniform velocity of $40 \mathrm{~m} / \mathrm{sec}$. Find the time taken by the police van to overtake the burglar's car.	CO9	L3
7	Define: i) Instantaneous velocity ii) Uniform acceleration iii) Variable acceleration iv) Retardation	COg	L3
8	What is a projectile? Define: i) Angle of projection ii) Horizontal Range iii) Vertical Height iv) Time of fligh	COg	L3
9	State and explain D' Alemberts principle	CO10	L3
10	What is Banking (super elevation) and why it is provided?	CO10	L3
11	Define:i) Centrifugal Force ii) Centripetal force iii) Centripetal Acceleration	CO10	L3
e	Experiences	-	-
1		CO 10	L2
2			
3			

Copyright ©2017. CAAS. All rights reserved.

4		CO 9
5		

E3. CIA EXAM - 3
a. Model Question Paper - 3

Crs Code:		CS501PC Sem:		Marks:	30	Time: 75	75 minutes		
Course:		Design and Analysis of Algorithm							
-	-	Note: Answer any 2 questions, each carry equal marks.					Marks	CO	Level
1	a	State and prove parallel axis theorem					7	C08	L3
	b	Determine the MI of semi circle by method of integration					8	C08	L3
		Determine the MI of lamina as shown in fig							
2	b						8	C08	L3
	b	Determine the radius of gyration for the lamina as shown in fig					8	C08	L3
3	a	Derive relationship between linear acceleration and angular acceleration					7	CO 9	L3
	b	A burglar's car starts with an acceleratin of $2 \mathrm{~m} / \mathrm{sec} 2$. A police van came after 10 sec and continued to chase the burglar's car with an uniform velocity of $40 \mathrm{~m} / \mathrm{sec}$. Find the time taken by the police van to overtake the burglar's car.					8	CO9	L3
4	a	State and explain D' Alemberts principle Define:i) Centrifugal Force ii) Centripetal force iii) Centripetal Acceleration					7	CO10	L3
	b						8	CO10	L3

b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	CS501PC Sem:	Marks:	5/10	Time: 9	90-120 minutes		
Course:	Design and Analysis of Algorithms						
Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.							
SNo	USN	Assignment Description			Marks	CO	Level
1		Define: i) Displacement ii) Velocity iii) Acceleration iv) Speed v) Decelaration vi) Average velocity			5	CO 9	L3
2		What is Banking (super elevation) and why it is provided?			5	COg	L3
3		What is a projectile? Define: i) Angle of projection ii) Horizontal Range iii) Vertical Height iv) Time of flight			5	CO10	L3
4		Define:i) Centrifugal Force ii) Centripetal force iii) Centripetal Acceleration			5	CO10	L3
5		Define: i) Instantaneous velocity ii) Uniform acceleration iii) Variable acceleration iv) Retardation			5	CO 10	L3
6		Define i) displacement ii) speed iii) uniform velocity iv) average velocity			5	CO10	L3
7	State and explain Newtons law of motion				5	CO10	L3
8		Derive relationship between linear acceleration and angular acceleration			5	CO10	L3
9		Derive relationship between r.p.m and angular velocity			5	CO10	L3
10		A wheel is rotating about a fixed axis at 20 r.p.m is uniformly accelerated for 70 sec , during which time it makes 50 revolution. Determine I) angular velocity at the end of this interval and ii) time required for the speed to reach 110 rpm			5	CO10	L3
11		A burglar's car starts with an acceleratin of $2 \mathrm{~m} / \mathrm{sec} 2$. A police van came after 10 sec and continued to chase the burglar's car with an uniform velocity of $40 \mathrm{~m} / \mathrm{sec}$. Find the time taken by the police van to overtake the burglar's car.			5	CO10	L3
12		Define: i) Instantaneous velocity ii) Uniform acceleration iii) Variable acceleration iv) Retardation			5	CO10	L3
13		What is a projectile? Define: i) Angle of projection ii) Horizontal Range iii) Vertical Height iv) Time of fligh			5	CO10	L3
14		State and explain D' Alemberts principle			5	COg	L3
15		What is Banking (super elevation) and why it is provided?			5	COg	L3

BS

F. EXAM PREPARATION

1. University Model Question Paper

Copyright O2017. cAAS. All right reserved.

		OR			
	a	Define i) displacement ii) speed iii) uniform velocity iv) average velocity	6	CO9	L 3
	b	Derive relationship between linear acceleration and angular acceleration	6	CO9	L 3
	c	A wheel is rotating about a fixed axis at 20 r.p.m is uniformly accelerated for 70 sec, during which time it makes 50 revolution. Determine I) angular velocity at the end of this interval and ii) time required for the speed to reach 110 rpm	8	Co10	L 3

2. SEE Important Questions

